If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8y^2+4y-6=0
a = 8; b = 4; c = -6;
Δ = b2-4ac
Δ = 42-4·8·(-6)
Δ = 208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{208}=\sqrt{16*13}=\sqrt{16}*\sqrt{13}=4\sqrt{13}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{13}}{2*8}=\frac{-4-4\sqrt{13}}{16} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{13}}{2*8}=\frac{-4+4\sqrt{13}}{16} $
| -7=u+2 | | -3÷4+p=1÷2 | | 36^(-3x)=216 | | 2+5(x+3)=15 | | 12=6x2 | | 8x+12-3=23 | | 85-3x=5 | | 4+2x+3x=7+6x | | 8/7y=168/9 | | 70*(x+200)=20x*7 | | 9-2(7x-5=3(x-5) | | x^2−2x=22 | | 17/13=10/v | | 4(3y+1)-12(y+1)=0 | | 17/13=10/w | | x^2=-2.17 | | 1+3v=6+4v | | (u+2)^(2)-12=0 | | 23x^2-123x+40=0 | | (-3)m=4.2 | | 25x-6=6 | | 19=-2(3p+1)-p | | u/4=17/7 | | 40+6(h-6)=-20 | | 5r-6r=5+3r-3r | | .75x-5/2=4 | | 6x-2x-8=3x+1x+6-14 | | 2(x−5)=10 | | 3/4x-5/2=4 | | 4(x+2)-4=12 | | 4(3t+1)-12t+1)=0 | | 8(8−k)=−72k |